
Micromega Corporation 1 Revised 2006-09-20

Application Note 31

uM-FPU V3 Floating Point
Calculations

This application note shows some examples of how to perform floating point calculations using the uM-FPU V3
floating point coprocessor. See Application Note 32 - uM-FPU V3 Long Integer Calculations for long integer
examples and the uM-FPU V3 Instruction Reference for a full description of all instructions.

The uM-FPU V3 IDE (Integrated Development Environment) software provides a code generator that automatically
produces uM-FPU V3 code from standard mathematical equations. It also generates code for various supported
microcontrollers. Using the uM-FPU V3 IDE is an excellent way of becoming familiar with uM-FPU V3 instruction
set, and is very useful for implementing your own equations and calculations. The uM-FPU IDE is available for
download on the Micromega website.

Brief Overview of the uM-FPU V3 chip
For a full description of the uM-FPU V3 chip, please refer to the uM-FPU V3 Datasheet, uM-FPU V3 Instruction
Reference, and the reference documentation for each of the supported microcontrollers.

The uM-FPU V3 chip is a separate coprocessor with its own set of registers and instructions designed to provide
microcontrollers with 32-bit floating point and long integer capabilities. The microcontroller communicates with the
uM-FPU using a SPI or I2C interface. The microcontroller sends instructions and data to the uM-FPU, and the uM-
FPU performs the calculations. The microcontroller is free to do other tasks while the uM-FPU performs
calculations. Results can be read back to the microcontroller or stored on the uM-FPU for later use. The uM-FPU
V3 chip has 128 registers, numbered 0 through 127, that can hold 32-bit floating point or long integer values.
Register 0 is often used as a temporary register and is modified by some of the uM-FPU V3 instructions. Registers 1
through 127 are available for general use.

Arithmetic instructions use the value in register A as an operand and store the result of the operation in register A.
Register A can be regarded as an accumulator or working register. The SELECTA instruction is used to select any
one of the 128 registers as register A. If an instruction requires more than one operand, the additional operand is
specified by the instruction. For example,

uM-FPU Instruction Description
FSET, 5 register[A] = register[5]
FADD, 10 register[A] = register[A] + register[10]
FSUB, 64 register[A] = register[A] – register[64]
FMUL, 1 register[A] = register[A] * register[1]
FDIV, 16 register[A] = register[A] / register[16]

Each of the basic floating point arithmetic instructions are provided in three different forms as shown in the table
below. For example, FADD,nn allows any general purpose register to be added to register A. The nn byte following
the opcode specifies the register to be added. The FADD0 instruction only requires the opcode and adds register 0 to
register A. The FADDI instruction adds a small integer value to register A. The signed byte (-128 to 127) following

Micromega Corporation 2 AN31: uM-FPU V3 Floating Point Calculations

Micromega Corporation 3 AN31: uM-FPU V3 Floating Point Calculations

the opcode is converted to floating point and added to register A. The FADD,nn instruction is most general, but the
FADD0 and FADDI,bb instructions are more efficient for many common operations.

Register nn
FSET,nn
FADD,nn
FSUB,nn
FSUBR,nn
FMUL,nn
FDIV,nn
FDIVR,nn
FPOW,nn
FCMP,nn

Register 0
FSET0
FADD0
FSUB0
FSUBR0
FMUL0
FDIV0
FDIVR0
FPOW0
FCMP0

Immediate value
FSETI,bb
FADDI,bb
FSUBI,bb
FSUBRI,bb
FMULI,bb
FDIVI,bb
FDIVRI,bb
FPOWI,bb
FCMPI,bb

Description
Set
Add
Subtract
Subtract Reverse
Multiply
Divide
Divide Reverse
Power
Compare

The uM-FPU V3 instructions to add register 1 to register 2 is as follows:

SELECTA,2
FADD,1

To create more readable programs, names are generally assigned to the register values. This application note uses
equations with the variables x, y, and z, so we define three uM-FPU registers XVAL, YVAL and ZVAL to store these
values. The method of defining symbols varies depending on the microcontroller being used. See the sample
programs for specific examples. Pseudo-code is used for the following definitions:

define XVAL as 1 ; x value uM-FPU register 1
define YVAL as 2 ; y value uM-FPU register 2
define ZVAL as 3 ; z value uM-FPU register 3
define C1 as 4 ; constant c1 uM-FPU register 4
define C2 as 5 ; constant c2 uM-FPU register 5

Using names for the registers, the sequence of uM-FPU V3 instructions for y = x is:

SELECTA, YVAL
FADD, XVAL

The uM-FPU V3 instructions required for various examples are shown on the following pages. The interface
routines for sending the uM-FPU V3 code depends on the microcontroller being used. Please see the reference
guides for the various supported microcontrollers for more specific information.

Micromega Corporation 2 AN31: uM-FPU V3 Floating Point Calculations

Micromega Corporation 3 AN31: uM-FPU V3 Floating Point Calculations

Micromega Corporation 4 AN31: uM-FPU V3 Floating Point Calculations

Examples
The following examples show how to translate common mathematical equations into the uM-FPU V3 instructions
required to perform the calculation. A brief explanation of each example is provided. The uM-FPU V3 IDE software
can be used to automatically generate code for standard mathematical equations.

x = 0.0

The CLRA instruction can be used to set a register to 0.0.

SELECTA, XVAL ; select XVAL as register A
CLRA ; XVAL = 0.0

x = -10.0

Immediate instructions can be used for small integer values.

SELECTA, XVAL ; select XVAL as register A
FSETI, -10 ; XVAL = -10.0

y = x / 10.0

SELECTA, YVAL ; select YVAL as register A
FSET, XVAL ; YVAL = XVAL
FDIVI, 10 ; YVAL = YVAL / 10.0

x = x + pi

The LOADPI, LOADE instructions provide a convenient way to load the values of pi and e.

SELECTA, XVAL ; select XVAL as register A
LOADPI ; register[0] = 3.1415927
FADD0 ; XVAL = register[0]

x = x + acceleration of gravity

Other common constants can be loaded using the LOADCON instruction. This example uses constant 14, which is the
value for the acceleration of gravity. See the uM-FPU V3 Instruction Reference for a full list of constants.

SELECTA, XVAL ; select XVAL as register A
LOADCON, 14 ; register[0] = 9.80665
FADD0 ; XVAL = XVAL + register[0]

x = x + y + z

Performing an operation using multiple registers is very straightforward.

SELECTA, XVAL ; select XVAL as register A
FADD, YVAL ; XVAL = XVAL + YVAL
FADD, ZVAL ; XVAL = XVAL + ZVAL

x = y / z

Micromega Corporation 3 AN31: uM-FPU V3 Floating Point Calculations

Micromega Corporation 4 AN31: uM-FPU V3 Floating Point Calculations

Micromega Corporation 5 AN31: uM-FPU V3 Floating Point Calculations

SELECTA, XVAL ; select XVAL as register A
FSET, YVAL ; XVAL = YVAL
FDIV, ZVAL ; XVAL = XVAL / ZVAL

y = 5x + 30

Constant values that are small integers can be easily handled using the immediate instructions. These instructions
load an integer value, converts it to floating point, and stores the result in register 0.

SELECTA, YVAL ; select YVAL as register A
FSETI, 5 ; YVAL = 5.0
FMUL, XVAL ; YVAL = YVAL * XVAL
FADDI, 30 ; YVAL = YVAL + 30.0

y = 512.0

The LOADBYTE, LOADUBYTE, LOADWORD and LOADUWORD instructions can also be used to load integer
constants. These instructions load an integer value, converts it to floating point, and stores the result in register 0.
The LOADWORD and LOADUWORD are used for 16-bit values and require two 8-bit bytes after the opcode.

SELECTA, YVAL ; select YVAL as register A
LOADWORD, 2, 0 ; register[0] = 512.0 (high byte, low byte)
FSET0 ; YVAL = register[0]

y = 0.15x + 0.5 (using ATOF instruction)

The ATOF instruction is used to convert a zero terminated string to a floating point value. (Note: make sure there is a
zero terminator on the string.) Constants can often be loaded as part of the program initialization code. In the
example below, the values of C1 and C2 could be set in the initialization section and then only the last four lines of
code would be required in the main program.

SELECTA, C1 ; select C1 as register A
ATOF, ".15", 0 ; load string, convert to floating point,

; and store in register 0
FSET0 ; C1 = register[0]

SELECTA, C2 ; select C2 as register A
ATOF, ".5", 0 ; load string, convert to floating point,

; and store in register 0
FSET0 ; C2 = register[0]

SELECTA, YVAL ; select YVAL as register A
FSET, C1 ; YVAL = C1
FMUL, XVAL ; YVAL = YVAL * XVAL
FADD, C2 ; YVAL = YVAL + C2

y = 0.15x + 0.5 (using FWRITE instruction)

The FWRITE instruction is a very efficient way of loading a floating point value to a uM-FPU register, but it
requires that you know the 32-bit representation for the floating point number. The automatic code generation
provided by the uM-FPU V3 IDE is a convenient way to generate floating point constants.

FWRITE, C1, $3E, $19, $99, $9A ; C1 = 0.15

Micromega Corporation 4 AN31: uM-FPU V3 Floating Point Calculations

Micromega Corporation 5 AN31: uM-FPU V3 Floating Point Calculations

Micromega Corporation 6 AN31: uM-FPU V3 Floating Point Calculations

FWRITE, C2, $3F, $00, $00, $00 ; C2 = 0.5

SELECTA, YVAL ; select YVAL as register A
FSET, C1 ; YVAL = C1
FMUL, XVAL ; YVAL = YVAL * XVAL
FADD, C2 ; YVAL = YVAL + C2

y = x2

To calculate the square of a value you can just multiply the number by itself.

SELECTA, YVAL ; select YVAL as register A
FSET, XVAL ; YVAL = XVAL
FMUL, XVAL ; YVAL = YVAL * XVAL

y = x-3

The immediate power instruction can also be used for small integer powers (-128 to +127).

SELECTA, YVAL ; select YVAL as register A
FSET, XVAL ; YVAL = XVAL
FPOWI, -3 ; YVAL = YVAL to the power -3

y = xe

The power instruction is used with any floating point value as a power.

SELECTA, YVAL ; select YVAL as register A
FSET, XVAL ; YVAL = XVAL
LOADE ; register[0] = 2.7182818
FPOW0 ; YVAL = YVAL to the power register[0]

y = sin(x)

The SIN instruction is an example of an instruction that operates on register A and doesn’t require any additional
operands. It calculates the sine of the value in register A and stores the result in register A. If the original value needs
to be retained, you should first assign it to another variable as shown below.

SELECTA, YVAL ; select YVAL as register A
FSET, XVAL ; YVAL = XVAL
SIN ; YVAL = sin(YVAL)

y = x / y

In the previous examples, we’ve been able to use the variable on the left side of the equation to hold the partial
results as each step of the equation is calculated. In the examples below, this is not possible because the value on the
left is used in the equation and can’t be modified until after it is used. Fortunately, the uM-FPU provides temporary
registers through the use of parentheses instructions. The equation below can be rewritten as y = (x / y), and the
calculation inside the parentheses uses a temporary register. Here’s how it works. When a LEFT parenthesis
instruction is sent, the current selection for register A is saved, and a temporary register is set to register A.
Operations can now be performed as normal, with the temporary register selected as register A. When RIGHT
parenthesis instruction is sent, the current value of register A is copied to register 0, and the previous selection for

Micromega Corporation 5 AN31: uM-FPU V3 Floating Point Calculations

Micromega Corporation 6 AN31: uM-FPU V3 Floating Point Calculations

Micromega Corporation 7 AN31: uM-FPU V3 Floating Point Calculations

register A is restored. Although it sounds complicated, the sequence of instructions is quite straightforward, a LEFT
and RIGHT parenthesis simply enclose the temporary value calculations.

SELECTA, YVAL ; select YVAL as register A
LEFT ; select temp1 as register A
FSET, XVAL ; temp1 = XVAL
FDIV, YVAL ; temp1 = temp1 / YVAL
RIGHT ; register[0] = temp1, and

; restore YVAL as register A
FSET0 ; Y = register[0]

z = (x + y) / 10

The uM-FPU executes instructions in the order in which they occur. In this example, parentheses are not necessary.
The addition is done first, followed by the divide.

SELECTA, Z ; select ZVAL as register A
FSET, XVAL ; ZVAL = XVAL
FADD, YVAL ; ZVAL = ZVAL + YVAL
FDIVI, 10 ; ZVAL = ZVAL / 10.0

y = (x + 1) / (x – 1)

In this example, the first set of parentheses are not necessary, since y can be used to hold the result of the first part of
the equation (x + 1). The second part of the equation requires parentheses to calculate the temporary value (x – 1).

SELECTA, YVAL ; select YVAL as register A
FSET, XVAL ; YVAL = XVAL
FADDI, 1 ; YVAL = YVAL + 1.0
LEFT ; select temp1 register as register A
FSET, XVAL ; temp1 = XVAL
FSUBI, 1 ; temp1 = temp1 - 1.0
RIGHT ; register[0] = temp1, and

; restore YVAL as register A
FDIV0 ; YVAL = YVAL / register[0]

z = x / (y + z)

In this example, z is used on the right of the equation so a temporary value is required. The equation can be rewritten
as z = (x / (y + z)). The uM-FPU V3 supports up to eight levels of nested parentheses.

SELECTA, ZVAL ; select ZVAL as register A
LEFT ; select temp1 register as register A
FSET, XVAL ; temp1 = XVAL
LEFT ; select temp2 register as register A
FSET, YVAL ; temp2 = YVAL
FADD, ZVAL ; temp2 = temp2 + ZVAL
RIGHT ; register[0] = temp1, and

; restore temp1 as register A
FDIV0 ; temp1 = temp1 / temp2
RIGHT ; register[0] = temp1, and

; restore ZVAL as register A
FSET0 ; ZVAL = temp1

Micromega Corporation 6 AN31: uM-FPU V3 Floating Point Calculations

Micromega Corporation 7 AN31: uM-FPU V3 Floating Point Calculations

z = sqrt(x3 + y4)

Calculating x3 and y4 requires temporary values, so the equation can be rewritten as z = sqrt((x3) + (y4)).

SELECTA, ZVAL ; select ZVAL as register A
LEFT ; select temp1 register as register A
FSET, XVAL ; temp1 = XVAL
FPOWI, 3 ; temp1 = temp1 to the power 3
RIGHT ; register[0] = temp1, and

; restore ZVAL as register A
FSET0 ; ZVAL = temp1
LEFT ; select temp register as register A
FSET, YVAL ; temp1 = YVAL
FPOWI, 4 ; temp1 = temp1 to the power 4
RIGHT ; register[0] = temp1, and

; restore ZVAL as register A
FADD0 ; ZVAL = ZVAL + temp1
SQRT ; ZVAL = sqrt(ZVAL)

Read 100 unsigned 8-bit samples from a sensor, and calculate the average.

The method of implementing the loop and reading the sensor will vary depending on the microcontroller sensor
used. See the sample programs for specific examples. Pseudo-code is shown below.

In this example, X is used to accumulate the sum of 100 sensor readings. The sum is then divided by 100 to calculate
the average value. Note: Since each reading sends 3 bytes to the uM-FPU and there are 100 passes through the loop,
it is important to check the status of the uM-FPU inside the loop to ensure that the 256 byte uM-FPU V3 instruction
buffer is not exceeded.

SELECTA, XVAL ; select XVAL as register A
CLRA ; XVAL = 0.0

loop for i = 1 to 100
{

read sensor value and store in svalue
wait for uM-FPU V3 to be ready
LOADUBYTE, svalue ; load unsigned 8-bit value to register 0

; and convert to floating point
FADD0 ; XVAL = XVAL + svalue (as floating point)

}
FDIVI, 100 ; XVAL = XVAL / 100.0

Further Information
Check the Micromega website at www.micromegacorp.com for up-to-date information.

